Defects4Ruby: Benchmarking and Analyzing Bug
Detection and Repair for Ruby Using Language
Models

Meghdad Dehghan*
University of British Columbia
Kelowna, BC, Canada
meghdad.dehghan @ubc.ca

Jie JW Wu
University of British Columbia
Kelowna, BC, Canada
jiejw.wu@ubc.ca

Abstract—Effective methods for detecting and repairing soft-
ware bugs are essential to ensuring the stability and security of
software systems. While Pre-trained Language Models (PLMs)
and Large Language Models (LLMs) are used for bug detection
and Automated Program Repair (APR), the literature mainly
studied a few programming languages, leaving behind low-
resource languages such as Ruby. Low-resource programming
languages are languages with limited training data available,
however, they can be widely used for several applications and
have a large community of developers. In this study, we provide
the first insights for bug detection and automatic program repair
for Ruby language using PLMs and LLMs. In addition to
reporting results, we contribute to the research field by open-
sourcing our collected dataset, named DefectsdRuby, to study
these tasks in Ruby. Our results on Defects4Ruby show that
PLMs and LLMs underperform in bug detection compared to
traditional machine learning models; while PLMs outperform
LLMs for APR. Both bug detection and APR results indicate a
need to develop new techniques to detect and fix bugs in Ruby.

Index Terms—Bug Detection, Automated Program Repair,
Language Models, Mining Software Repositories, Ruby.

I. INTRODUCTION

In the rapidly evolving field of software development,
bugs profoundly impact software systems, leading to crashes,
data corruption, and security vulnerabilities [[1]. Bugs dis-
rupt software functionality and pose significant financial and
reputational risks for companies [2]. Addressing bugs incurs
substantial costs, with companies allocating considerable re-
sources to bug detection, localization, and repair [3]. This
highlights the urgent need for techniques to detect and fix
bugs automatically.

Recent advancements in artificial intelligence, particularly
in Pre-trained Language Models (PLMs), have opened new
avenues for automating software development tasks. PLMs,
with their remarkable ability to simulate human linguistic

*These authors contributed equally to this work.

Mohammadreza Saeidi*
University of British Columbia
Kelowna, BC, Canada
mohammadreza.saeidi@ubc.ca

Fatemeh H. Fard
University of British Columbia
Kelowna, BC, Canada
fatemeh.fard @ubc.ca

Rohit Dandamudi*
University of British Columbia
Kelowna, BC, Canada
rohit.dandamudi@ubc.ca

Gema Rodriguez-Pérez
University of British Columbia
Kelowna, BC, Canada
gema.rodriguezperez @ubc.ca

capabilities [4], have shown promise in various programming-
related tasks, including code generation [5} |6], code summa-
rization [/]], bug detection [8], and Automated Program Repair
(APR) [9]. Despite impressive results in tasks such as code
generation, the success rate of PLMs in complex programming
tasks like bug detection and APR remains relatively low
[4]. Little is known about their performance for low-resource
programming languages, such as Ruby, where limited training
samples are available [10, [11].

Ruby is a widely used programming language with appli-
cations ranging from web development to game design and
is utilized by companies like Airbnb, Shopify, and GitHub
[12} [13]]. The Rails framework, one of Ruby’s most popular
tools, is extensively adopted for web server development.
With over two million projects hosted on GitHub and a large
community of developers, Ruby is among the top 10 program-
ming languages used on GitHub [14]]. Despite its popularity,
automated techniques such as bug detection and APR remain
underexplored for Ruby, particularly with the advent of PLMs
and Large Language Models (LLMs). While research exists
for high-resource languages like Java [9] and C [15], and
even for Ruby in traditional machine learning contexts [16],
the potential of PLMs and LLMs in automating software
engineering tasks for Ruby remains largely unexplored.

To address this gap, we curate a dataset of real-world
Ruby bugs by mining commits from GitHub repositories,
following methodologies employed in prior studies [17, [18].
This approach enables us to collect diverse bugs at the method
level while mitigating data leakage issues. We publish this
open-source dataset to support open science initiatives (see
Section [IX] for details).

Using the curated dataset, we evaluate the capabilities of
PLMs, such as CodeBERT and CodeT5, and LLMs, including
GPT-40 and CodeLlama, for bug detection and APR tasks
in Ruby. Additionally, we compare their performance with



traditional machine learning models. Our experiments are
conducted in both intra-project and cross-project settings,
providing insights into the generalizability of these models
across different domains.

We aim to answer the following research questions in this

study:

« RQ1: How do PLMs and LLMs perform in bug
detection and APR tasks for Ruby? While prior
studies have explored PLMs’ performance for various
code-related tasks [19l 20|, little is known about their
effectiveness in bug detection and APR for Ruby. This
question evaluates the models’ efficiency in fine-tuning
and zero-shot learning for these tasks. The results show
that machine learning algorithms slightly perform better
in bug detection as a classification task while the PLM
and LLMs fail to effectively classify the buggy and non-
buggy codes. In the APR task, the results of the PLM
outperforms the LL.Ms indicating the potential superior
of fine-tuning over zero-shot prompting of larger models.

« RQ2: How do PLMs perform in bug detection and
APR in cross-project settings? Real-world software
projects often require models to generalize across do-
mains. This question investigates the impact of cross-
project settings on the performance of PLMs and tra-
ditional machine learning models for bug detection and
APR tasks in Ruby. The machine learning methods
consistently outperform the PLM in all cross-project
experiments for the bug detection task. The results of the
APR task for this RQ indicate that the PLM performs
better than the Naive Copy method.

Our contributions are summarized as follows:

1) Dataset Curation: We curate a diverse dataset of real-
world Ruby bugs by mining GitHub repositories. This
dataset is made publicly available to encourage further
research in this domain.

2) Model Evaluation: We systematically evaluate the per-
formance of PLMs, LLMs, and traditional machine
learning models for bug detection and APR tasks in
Ruby, in both intra- and cross-project settings.

3) Insights: We provide actionable insights for researchers,
with results indicating close-to-random performance in
some scenarios, which we report as negative results.

The rest of this paper is structured as follows: Section
and Section [[II] cover methodology, detailing the data
collection process and chosen models with evaluation metrics,
respectively. Section [[V] reports the findings of our study.
Section |V| discusses the results and their implications. Section
[V reviews related work. Section [VII] examines the threats to
validity. Finally, Section concludes the study and outlines
directions for future work.

II. DATASET

A. Data Collection

In this paper, inspired by Chowdhury et al. [[17] and Tufano
et al.’s [18] approaches, we mine GitHub data to collect pairs

of buggy and fixed code. The core idea is to treat the code
before a bug-fixing commit as the buggy version and the
code after the commit as the potentially fixed version. This
methodology relies on bug-fixing commits being submitted to
address identified bugs in the codebase. Consequently, we can
reasonably conclude that the source code before such a commit
contains a bug, and the changes introduced by the commit are
intended to fix it. However, as suggested by Chowdhury et
al. [17]], certain additional criteria should be met to ensure
that the code after a bug-fixing commit is free of bugs. For
instance, the code should exhibit a two-year stability period
and lack subsequent bug-fixing commits on the same method.
The details of the data collection process are as follows:

1) Repository Selection: The first step of collecting the
required dataset is finding repositories that will be mined
to collect bug-fixing commits. To do so, GST [21], we use
a dataset containing 25 characteristics of 735,669 GitHub
repositories. With various inclusion and exclusion criteria, the
GST dataset can be queried using a web applicatiorﬂ

Inclusion Criteria. In this paper, we select repositories
with the main programming language being Ruby. In addition,
selected repositories should:

1) Have at least 1,000 commits to ensure that the final
dataset is not biased towards specific projects in terms
of having bug-fix pairs. Without this criterion, several
repositories may have significantly fewer bug-fix pairs
than other projects (e.g., more enormous repositories).

2) Be created before June 3, 2022, to ensure that each
selected repository contains at least one file that has
remained unchanged for at least two years before the
data collection date (i.e., June 3, 2024). This criterion is
inspired by Chowdhury et al.’s [17] methodology.

Exclusion Criteria. Repositories that are forked are ex-
cluded. A fork is a new repository that shares code with the
original repository [22]. If forked repositories are included in
the data collection process, it can cause duplicate samples in
the final dataset.

By applying these criteria, 2,114 Ruby repositories were
collected to extract bug-fixing commits in the next step.

2) Bug-Fixing Commits Identification: Bug-fixing commits
are identified by traversing all commits in each selected
repository. PyDriller [23], a tool that clones a project and
iterates through its commits on a specific branch, is utilized for
this purpose. Two Regular Expressions (RegEx) are applied to
the commit messages: The first RegEx, as shown in Listing
excludes commits that are cherry-picking or revert commits,
or related to documentation, test files, formatting, or linting.
Cherry-picking involves copying a commit from one branch
to another [24]], potentially leading to duplicate samples in
the dataset. Revert commits indicate that the changes are no
longer valid. Commits related to documentation, formatting,
and linting aim to improve code structure rather than address
logical bugs. Commits related to tests are also excluded

Uhttps://seart-ghs.si.usi.ch/


https://seart-ghs.si.usi.ch/

because changes in test files often reflect changes in the
business logic.

Listing 1: Exclusion RegEx.

\\b(cherry |reverts ?| tests ?| rubocop |
documentations ?| beautif (?:y|ying|ies)?|
t(re)?format(?:ing|ting)?|lint(?:er|ing))

\\b

The second RegEx, inclusion RegEx, identifies bug-fixing
commits based on keywords found in their messages, follow-
ing Chowdhury et al. [17]] and Tufano et al.’s [18] studies. As
shown in Listing 2] it looks for messages containing words
like fix OR solve OR repair OR address AND bug
OR problem OR error OR exception with variations
in these words considered.

Listing 2: Inclusion RegEx.
\\b(?: fix (?:s|es|ed|ing)?]|
(re)?solv(?:eles|ed|ing)?|repair(?:ed|s|
ing)?| address (?:es|ed|ing)?)\\b.#?2\\b(?:
bug (?:s|gy|y)?|problems?| errors ?|
exceptions ?)\\b

3) Bug-Fix Pairs Extraction: For each bug-fixing commit,
changed files and methods are analyzed to isolate single-
method bug-fix pairs, focusing exclusively on commits where
exactly one method has been modified. Also, new methods
are excluded as they lack a previous counterpart to be con-
sidered buggy code. Each commit’s current and previous code
snapshots are extracted to represent the buggy and fixed code
versions, respectively. Several additional criteria, inspired by
the methods in previous works [[17, 18], are applied to ensure
data quality, as described below.

Reviewing Future Commits: To ensure each extracted
bug-fix pair accurately represents buggy and fixed code, the
method’s subsequent commits are examined to confirm that
no later bug-fixing commits modify the current version of the
technique. If a future bug-fixing commit alters the current
version of the method, the version in the initial commit
cannot reliably be labeled as “fixed” since it required further
adjustment. In such cases, the version of the method after the
later commit is designated as the “fixed” code. In contrast,
the version before the initial commit is treated as the “buggy”
code, preserving the validity of the bug-fix pairing.

Two-Year Stability Period: Inspired by Chowdhury et
al. [17], a method labeled as “fixed” is required to remain
unmodified for at least two years after the bug fix to ensure
the fix’s stability. The commit is excluded from the dataset if
the period between subsequent changes is less than two years.

Excluding Methods in Test Files: Since modifications in
test files typically mirror changes in the business logic, all
methods in files identified as test files are excluded. Test
files are recognized using a regular expression that detects
variations of the term “test” in file names.

The methodology described yielded a collection of 10, 702
real-world bug-fix pairs for Ruby sourced from 1, 289 reposi-
tories. Notably, while the initial repository list included 2, 114

repositories, only 1,289 contained at least one valid bug-fix
pair, with the remaining 829 repositories excluded due to the
absence of qualifying bug-fix pairs. This study will use this
dataset for both bug detection and APR tasks.

4) Manual Evaluation: A manual analysis was performed
on a randomly selected sample of 100 commits to ensure the
quality of the collected bug-fixing commits. The first three
authors individually reviewed these commits and determined
whether they were submitted to fix reported bugs. After re-
solving seven conflicts, it was found that eight of the commits
were not bug-fixing commits. This results in a precision of
92% for the dataset.

As this precision was above 91% and is accepted as a valid
accuracy in similar studies [25]], we used our collected dataset
for the experiments in this work. Additionally, we discuss the
related threats in Section [VII}

5) Dataset Preparation: Following the described process,
we collected 10, 702 bug-fix pairs, each consisting of a buggy
method and its corresponding fixed method. These pairs are
directly used in the APR task, where the buggy code serves
as the input to the models, and the fixed code is treated as the
ground truth for the models’ output.

We process each pair separately for the bug detection task
by treating the buggy and fixed code as individual records. A
binary label is assigned to each record to distinguish between
them, indicating whether the code is buggy or not. This process
results in a dataset containing 21,404 records, evenly split
between buggy and non-buggy code.

As the total number of records in the dataset is approx-
imately 10K for within-project settings and fewer than 5K
for cross-project settings, we opted to divide the dataset into
training and test splits, with the ratio of 8:2. This decision
is motivated by the observation that the models show no
overfitting issues, as evidenced by the low changes in training
loss during the training phase. Even with an increased number
of epochs, the models remain underfitted. The absence of
overfitting issues eliminates the need for a validation split,
which is primarily used for regularization and avoiding the
models to be overfitted to the training data [26]. Instead, by
limiting the dataset to training and test splits, we increase the
number of training samples, potentially allowing the model to
learn more effectively from the data. However, as shown in
Section our experiments reveal negligible improvements
under this setting.

Given that bug detection and APR are time-sensitive tasks
[17]], we ensure that the models are trained on older data than
what is included in the test set.

III. LANGUAGE MODELS AND EVALUATION METRICS

This section covers different techniques incorporated in the
study to tune or prompt the models in the chosen downstream
tasks of bug detection and APR for the Ruby programming
language.

A. The Choice of Language Models

CodeTS5 is a pre-trained Transformer model designed for
code understanding and generation tasks. It employs a unified



framework that utilizes the coding semantics conveyed through
the identifiers assigned by developers, allowing for a more
seamless and accurate understanding of code. Moreover, it will
enable multi-task learning, making it a versatile and powerful
tool for developers to use in their projects [27]. It also performs
well in vulnerability detection compared to the novel deep
learning method at a function level scope [28] that fits the
tasks and problems we aim to investigate in this study.

Code-Llama-7b-Instruct This model is one of the latest
state-of-the-art open-source Large Language Models and part
of the CodelLlama model series released from Meta [29]].
CodeLlama is a highly specialized version of Llama2, de-
signed to cater specifically to the needs of developers and
programmers. It results from further fine-tuning of the Llama-2
model on programming language corpus [29]. This has enabled
CodeLlama to develop a deep understanding of the intricacies
of coding languages and their nuances, making it a powerful
tool for developers to streamline their coding process. Given
our limited resources, we use the 7B version of this model
to enable experimentation on a single GPU. Additionally,
since we apply zero-shot prompting without additional fine-
tuning, we rely on the instruction-tuned version to generate
task-specific responses. Without instruction tuning, pre-trained
versions of large language models (LLMs) tend to provide
open-ended answers that do not meet our requirements. In
Section we elaborate on the prompt design used to obtain
the desired output from the model.

GPT-40 This model is one of the most popular and latest
commercial language models developed by OpenAl, capable
of handling various tasks and equipped with advanced rea-
soning capabilities [30]. Introduced in May 2024, this model
can respond to text, image, and audio queries. It performs
better than its competitors on the HumanEval [20] benchmark,
one of the most widely recognized benchmarks for code
generation and intelligence. This model was selected because
it is currently the most widely used for solving various tasks,
including programming.

Table [I] presents an overview of the PLMs and LLMs used
in this study, including their sizes and corresponding data used
during their training phase.

TABLE I: PLMs and LLMs used in our experiments.

Model Training Data Parameter Sizes
CodeT5 Ruby, JavaScript, Go, Small (60M) and Base (220M)
Python, Java, PHP, C, C#
CodeLlama  C++, Java, PHP, Type- 7B
Script, C#, Bash
GPT-40 NA NA

B. Learning methods

1) Fine Tuning: Fine-tuning PLMs represents an initial ap-
proach in transfer learning aimed at adapting language models
to specific downstream tasks [31]. This technique updates all
model parameters during the adaptation phase, necessitating
significant time and memory resources, particularly as model

TABLE II: The initial value of hyper-parameters used to fine-
tune the PLM for both bug detection and APR tasks.

Hyper-parameter Value
Learning rate le-5
Optimizer AdamW
Warm up steps 10%
Adam-epsilon le-8
Training batch size 16
Validation batch size 16

sizes expand [6]. Building upon prior research [9, 32], we
undertake fine-tuning of a PLM, i.e., CodeT5 (base) [27],
aimed to analyze the Ruby dataset for the bug detection and
APR tasks. Following the prior research [33], we set the initial
value of hyper-parameters for our experiments as shown in
Table

We set the models’ input token size for both tasks to 256
tokens. The model’s output size for the APR task is also set to
256 tokens. We train the models on all dataset variants, both
for RQ1 and RQ?2, for three epochs and report the results on
the validation set after the final epoch. All experiments are
conducted on a single NVIDIA Tesla V100 32GB GPU.

2) Zero-shot learning: Zero-shot learning or prompting is
one of the primary techniques in in-context learning, where
the model is prompted with the task to be performed without
being given any examples of the task [34]. In most use cases,
developers apply zero-shot prompting to LLMs to solve their
problems in the software development process. In this study,
we use zero-shot prompting of LLMs, i.e., Code-Llama-7b-
Instruct and GPT-40, as a widely used and primary approach
to evaluate bug detection and APR tasks using such models.

For the bug detection task, we use prompts to direct the
models to classify the provided code as either ‘buggy’ or ‘non-
buggy’. Initially, these models are adjusted to generate more
information about the program snippets. To ensure we can
identify the code label in the model output, we prompt them
to provide only the label of the given code without additional
information. The following is the prompt for bug detection by
LLMs: “Classify the following Ruby code as ‘buggy’ or ‘non-
buggy. Only answer with ‘buggy’ or ‘non-buggy’: {CODE}”,
where {CODE} represents the input code, which may be either
buggy or non-buggy.

We ask the models to generate a fixed code version for the
APR task without analyzing the existing bugs. This allows us
to retrieve only the fixed code snippet and compare it with
the ground truth in the dataset. The prompt for this task is as
follows: “Fix the bug in the given code and output the fixed
version of the code; only respond with the fixed code, without
any extra explanations: {CODE}”, where {CODE} represents
the given buggy code provided to the model.

C. Machine Learning Methods

Multiple studies have demonstrated that machine learning
methods are highly effective in identifying defects [35] 36].
As such, we have carefully selected two models that have
shown exemplary performance in classification tasks.



TABLE III: Accuracy, precision, recall, and Fl-score of different models on bug detection. The results for Code-Llama-7b-

Instruct and GPT-40 models are reported in over 100 samples.

Model Accuracy  Precision Recall F-Score
Random Forest 56.97% 56.99% 56.97%  56.96%
XGBoost 58.78 % 58.79 % 58.78%  58.74%
CodeT5 50.95% 51.05% 50.95%  50.54%
Code-Llama-7b-Instruct 44.00% 44.19% 44.00% 37.87%
GPT-40 49.00% 49.08% 49.00%  49.04%

TABLE IV: BLEU score of language models on APR task.
The results of Code-Llama-7b-Instruct and GPT-40 models are
reported on 100 dataset samples.

Model BLEU
CodeT5 90.12%
Code-Llama-7b-Instruct ~ 61.57%
GPT-40 78.68%

1) XGBoost: XGBoost [37] is an open-source machine-
learning method that utilizes an advanced algorithm called
gradient boosting to power scalable and distributed decision
trees. It is designed to work seamlessly with large datasets
and can be used for various applications, including regression,
classification, and ranking problems. The parallel tree boosting
functionality ensures faster and more accurate model training,
making XGBoost the leading choice for data scientists and
machine learning enthusiasts worldwide.

2) Random Forest: Ensemble classifiers are a group of
machine learning algorithms that combine the predictions
of multiple models to improve overall performance. One
commonly used ensemble classifier is Random Forest [38]].
This algorithm is known for its ease of use and flexibility,
as it can handle both classification and regression problems.
When constructing decision trees in a Random Forest, a
random selection of attributes is chosen, and individual trees
are created using a simple algorithm. Unlike other decision
tree algorithms, pruning is not performed at each node, and
attributes are sampled randomly. The unlabelled example is
classified based on the majority of voting. One significant
advantage of Random Forest is its speed and ability to handle
many input attributes [36]. This algorithm is also less prone
to overfitting, a common problem in decision tree algorithms.

To identify optimal hyperparameter configurations for train-
ing machine learning algorithms, we conducted experiments
using different values of maximum depth of the trees in
{16, 64, 256,512} and number of estimators in {2,10,100}.
Based on these experiments and their results, we set the
maximum tree depth and the number of tree estimators to
256 and 10, respectively. We opt for these values across all
experiments involving machine learning algorithms.

D. Evaluation Metrics

This study reports accuracy, precision, recall, and F1-score
as commonly used metrics for evaluating classification tasks,
such as bug detection [17]. Accuracy measures the propor-
tion of correct predictions made by the model out of the

total number of predictions. Precision evaluates the quality
of positive predictions by calculating the ratio of correctly
predicted positive samples (e.g., buggy code) to the total
number of samples predicted as positive. Recall is the ratio
of correctly predicted positive samples to the total number of
positives. Finally, the Fl-score provides a harmonic mean of
precision and recall, balancing their trade-offs. These metrics
collectively offer a comprehensive assessment of the model’s
performance in the bug detection task.

For the APR task, the generated code from the models is
expected to be assessed about the ground truth code in the
dataset. To measure the similarity of these code snippets,
we use the widely used BLEU score [39] similar to prior
studies [27, 133, 40]. This metric measures the similarity of
two sequences of tokens by incorporating the overlapping n-
grams in the sequences. The exact definition of this metric is
formulated as follows:

N
BLEU = BP x exp()_ wnlog(pn))

n=1

(D

Where BP is the brevity penalty, calculated based on the
generated output’s length and the dataset’s ground truth code.
Additionally, p,, represents the modified precision for n-grams,
and w,, denotes the weight of each n-gram. We report the
BLEU score with n = 4 in all the experiments similar to
prior studies [33].

IV. RESULTS

This section presents the results of applied methods to
evaluate PLMs, LLMs, and ML algorithms for both bug
detection and APR tasks.

A. PLMs and LLMs Performance for Bug Detection and APR

To answer this question, we examine the bug detection
capability of classical machine learning methods on the Ruby
dataset and compare it with the results of the language model’s
fine-tuning and zero-shot prompting. The results are repre-
sented in Table [ITI] and Table [IV] for bug detection and APR
tasks, respectively. The Ruby dataset used for this research
question contains more than 10K samples, whereas for the
larger models, i.e., Code-Llama-7b-Instruct and GPT4-0, we
report the results on 100 randomly selected records. This
choice is made for LLMs, as we use the prompting strategy
rather than training the models. As observed for bug detection
tasks, when comparing the classical machine learning methods



TABLE V: Accuracy, precision, recall, and fl-score of CodeT5 model vs. machine learning algorithms, i.e., Random Forest

and XGBoost, on bug detection in the cross-project setting.

Dataset Splits Model Accuracy  Precision Recall F1-Score
CodeT5 47.07% 46.24% 47.07% 43.28%
Train(3156) / Test(890) Random Forest 59.48% 59.51% 59.48 % 59.47 %
XGBoost 55.50% 55.57% 55.50% 55.44%
CodeT5 46.43% 46.60% 46.43% 46.39%
Train(3392) / Test (654) Random Forest 53.88% 54.32% 53.88% 53.66 %
XGBoost 53.57% 53.58% 53.57% 53.57%
CodeT5 54.83% 55.00% 54.83% 54.87%
Train(3451) / Test (595) Random Forest 63.19% 63.76 % 63.19% 63.16%
XGBoost 56.66% 57.09% 56.66% 56.65%
CodeT5 51.43% 51.57% 51.43% 51.37%
Train(3187) / Test (859) Random Forest 50.96% 50.80% 50.96% 50.62%
XGBoost 53.71% 53.69 % 53.71% 53.69%
CodeT5 49.84% 50.13% 49.84% 49.80%
Train(3302) / Test (744) Random Forest 56.37% 57.28% 56.37% 55.95%
XGBoost 59.32% 59.55% 59.32% 55.96 %
CodeT5 50.53% 50.67% 50.53% 50.55%
Train(2919) / Test (1127)  Random Forest 47.86% 48.17% 47.86% 47.69%
XGBoost 51.79% 51.80% 51.79% 51.79%
CodeT5 49.09% 49.10% 49.09% 49.09%
Train(3556) / Test (490) Random Forest 52.55% 52.54% 52.55% 52.33%
XGBoost 53.04% 53.03% 53.04% 52.94%
CodeT5 51.30% 51.67% 51.30% 50.61%
Train(3560) / Test (486) Random Forest 53.57% 53.51% 53.57 % 53.39%
XGBoost 51.90% 52.02% 51.90% 51.84%
CodeT5 52.15% 53.06% 52.15% 50.16%
Train(2924) / Test (1122)  Random Forest 56.11% 56.08 % 56.11% 56.06%
XGBoost 53.18% 53.27% 53.18% 53.15%
CodeT5 50.63% 50.29% 50.63% 50.14%
Train(3019) / Test (1027) Random Forest 52.64% 52.66% 52.64% 52.65%
XGBoost 51.37% 51.61% 51.37% 51.36%
CodeT5 50.33% 50.43% 50.33% 49.63%
Average Random Forest 54.66 % 54.86 % 54.66 % 54.50%
XGBoost 54.00% 54.12% 54.00% 53.64%

TABLE VI: The BLEU Score of CodeT5 model on 10 cross-
project data splits for automated program repair task. The
Naive Copy column shows the score when no changes is made
in the buggy code.

Dataset Split CodeT5 Naive Copy
Train(3156) / Test (890) 88.33% 84.45%
Train(3392) / Test (654) 90.78 % 80.43%
Train(3451) / Test (595) 85.46% 86.56%
Train(3187) / Test (859) 90.09 % 80.82%
Train(3302) / Test (744) 86.16% 86.21%
Train(2919) / Test (1127)  90.97% 87.22%
Train(3556) / Test (490) 91.46 % 85.20%
Train(3560) / Test (486) 90.83% 84.60%
Train(2924) / Test (1122)  89.38% 84.65%
Train(3019) / Test (1027)  90.71% 84.50%
Average 89.42% 84.46%

with language models, the Random Forest algorithm achieves
better results with an accuracy of 58.78%

The results of all language models are close to 50%, similar
to randomly guessing the labels of bugs in the dataset. This

suggests that the learning capability of the models on the low-
resource language Ruby for this task is limited. In contrast,
classical machine learning approaches still yield better perfor-
mance for this task.

More interestingly, the performance of zero-shot prompting
with Code-Llama-7b-Instruct and GPT-40 models is even be-
low 50%, indicating that even larger models fail to detect bugs
effectively. In scenarios with only the buggy code, learning-
based methods, such as traditional machine learning algo-
rithms and fine-tuning pre-trained language models, continue
to show superior performance.

Despite the poor performance of the pre-trained language
model on the bug detection task, its results on the automated
program repair task is relatively high. Table [[V] reports the
results for APR. Machine learning methods are only applied
to the bug detection task, as these methods are compatible with
classification tasks and not the generative task of APR. The
BLEU score of the CodeT5 model is 90.12%, which is higher
than the naive copy score in our dataset. The naive copy score
for Ruby on APR is 84.36%. This score is obtained when the
initial buggy code is considered as the fixed code and is thus



compared with the ground truth fixed code. In other words,
this suggests that the model does not learn to introduce any
changes to the initial code. We consider the naive copy of the
input code as the baseline similar to previous works [40].

The results of zero-shot prompting for LLMs are lower than
the baseline score, with scores of 61.57% and 78.68% for
the Code-Llama-7b-Instruct and GPT-40 models, respectively.
This indicates that these models tend to produce more cor-
rupting changes to the initial code rather than fixed patches.
In Section [V} we further investigate this issue by providing an
example of for each of the models.

~

Finding 1: Results of the first RQ show that Random
Forest outperforms PLMs and LLMs in bug detection
tasks for the Ruby language. All language models
achieve near 50% accuracy, equivalent to random
guessing, indicating that such models fail to address
the bug detection task for Ruby effectively. In contrast,
fine-tuning PLMs on the Ruby dataset shows improved
results compared to the baseline score on the APR
task. Such improvement is not observed when using
LLMs with zero-shot prompting. This suggests that
fine-tuning PLMs has an advantage in APR tasks for
low-resource languages over zero-shot prompting of
larger models, indicating the need for other techniques
to use LLMs for APR in Ruby.

B. Models’ Performance on Bug Detection and APR in Cross-
Project Setting

Table [V] shows the results of the fine-tuned PLM and ML
algorithms on different dataset variants for the bug detection
task, along with the train and test split sizes. Similar to
the previous RQ, we observe that the performance of ML
algorithms significantly outperforms that of the fine-tuned
PLM. The performance decreases compared to RQI, indicat-
ing the models’ performance drops when tested on new data,
i.e., projects. Among these algorithms, Random Forest scores
higher than XGBoost in 6 of the ten experiments.

More specifically, the results of the fine-tuned PLM are near
50% for all dataset variants, with several cases falling below
50% for all metrics. Such poor performance demonstrates
the inefficiency of fine-tuning PLMs when the domain of
bugs differs between the train and test splits. However, ML
algorithms maintain their performance even when the domain
of the training data differs from the test data. These algorithms
are more robust in low-resource scenarios where the available
data for training is limited.

Table [VI] shows the results for the same data distributions on
the APR task with the fine-tuned CodeT5 model. As observed,
the results are higher than the naive copy score in 8 out of 10
experiments, with 91.54% as the highest and 85.46% as the
lowest BLEU scores. Such scores indicate the effectiveness
of fine-tuning models for APR, even when the train and test
splits distributions differ.

Finding 2: In analyzing 10 Ruby datasets with
different domains for their train/test splits, fine-tuned
CodeTS5 does not outperform traditional machine learn-
ing methods. The Random Forest algorithm performs
better in most cases for detecting bugs than other
methods in this cross-project evaluation.

The enhanced performance of the PLM in the APR
task is still observable across different domains com-
pared to naive copy. However, the average performance
of the model on all cross-project datasets drops when
compared with the intra-project setting (RQ1) indicat-
ing that the having samples from same projects and
domains in both train and test data splits helps the
performance improvement of the model.

V. DISCUSSION
A. Result Analysis

In Section [[V] the performance of the selected PLM for
the bug detection task was discussed. However, the results
were unsatisfactory, with the maximum accuracy reaching
only 50.95%, comparable to guessing randomly. Additionally,
the models were fine-tuned and evaluated in a cross-project
setting, where the distributions of the training and testing splits
differed, each containing distinct projects. Similarly, signifi-
cant changes in the results were not observed, and the models’
performance remained poor. In both cross-project and intra-
project settings, the machine learning algorithms outperformed
the PLM and the LLMs for the first RQ, highlighting the
effectiveness of such methods for low-resource programming
languages like Ruby.

Other studies [15, 40] have demonstrated higher perfor-
mance of fine-tuning PLMs for the bug detection task in the
C programming language (62.08%). Considering the lower
readability and, consequently, reduced understandability of C
code snippets by language models compared to Ruby, the
higher performance of PLMs on C is noteworthy. These results
highlight the significant impact of data quality and size when
training these models for the bug detection task. Notably, the
dataset used in the other study contains nearly 20K samples,
which is double the size of our dataset. This could be a
potential reason for the higher performance of the models on
C, in addition to the data quality and the types of bugs present
in the dataset.

B. Example Cases

Despite of the high score of the PLM and good scores of
LLMs for the APR task, the real capability of such models in
fixing buggy codes is limited. Figure [I] illustrate an example
of the APR task in which the buggy code, ground truth fixed
code, and generated codes of the models are represented. As it
is observed, the generated codes by all models do not correctly
address the initial bug in the input code. Particularly, among
those three models, Code-Llama-7b-Instruct fails to capture
the buggy line of the code and makes unnecessary changes in
wrong parts. CodeT5 and GPT-40 models correctly capture the



1- def index
. 2 authorize(Guidance)
1~ def index : 3 paginable_renderise(
2 author12e(Gu1dan§e) 4 partial: "index",
3 paginable_renderise( 5 scope: Guidance.by_org(current_user.org)
d partial: "index", 6 .includes(:guidance_group,
5 scope: org.admin, :themes),
6 query_params: { sort_field: "guidances 7 query_params: { sort_field: "guidances
.text", sort_direction: :asc } .text", sort_direction: :asc }
7 ) 8 )
8 end 9 end
(a) Input buggy code. (b) Fixed code as ground truth.
1- def index
2 authorize(Guidance)
1~ def index 3 paginable_renderise(
2 authorize(Guidance) 4 partial: "index",
3 paginable_renderise( 5 scope: org.admin,
4 partial: "index", 6 query_params: { sort_field: "guidances
5 scope: Guidance. .text", sort_direction: :asc },
6 query_params: { sort_field: "guidances 7 sort_field: "guidances.text",
.text", sort_direction: :asc } 8 sort_direction: :asc
7 D 9 )
8 end 10 end
(c) Generated code by CodeT5 model. (d) Generated code by Code-Llama-7b-Instruct model.
1- def index
2 authorize(Guidance)
3 paginable_renderise(
4 partial: "index",
5 | scope: Guidance.all,
6 guery_params: { sort_field: "text",
sort_direction: :asc }
N )
8 end

(e) Generated code by GPT-40 model.

Fig. 1: An example of buggy code and its fixed version and generated codes by different models. Highlighted lines represent
the buggy part of the input code (a) and the changes in others (b, ¢, d, and e).

buggy line of the code yet both of them fail to fix it correctly.
Additionally, the generated codes by larger models, i.e., Code-
Llama-7b-Instruct and GPT-40, are syntactically correct while
the generated code by CodeTS5 is corrupted.

A manual analysis of the results of the initial experiments
(fine-tuned CodeT5) was conducted to investigate the reasons
for the poor performance further. A random dataset of 200
predicted bug-fix pairs was curated, including 50 samples
each of True Positive, True Negative, False Positive, and
False Negative. These samples were independently analyzed
by two authors to identify any meaningful patterns between
the correctly predicted samples and the failures. However, this
analysis did not reveal any specific pattern that the model
followed to produce better results for certain types of bugs.

In our manual analysis, it was also observed that detecting
whether a code snippet contains a bug was challenging for
the authors, primarily because they were not familiar with

the projects’ specific business requirements. Some buggy
methods are heavily dependent on the context of the project.
In other words, a specific method might be considered buggy
in one project while functioning correctly in another due to
differences in their business requirements. To this end, since
we are not providing further information about the existing
bugs in the code, it is possible to achieve poor performance
on these tasks.

Another issue we found in our manual analysis is related
to the scope of the collected bugs. In our data collection
phase, we consider the changed methods to be the scope of
the bug and only feed these methods to the model. However,
based on the manual analysis, we observed many methods
that produced bugs in other methods or files. In other words,
although the technique caused a bug in the system, it could
not be discovered by considering the changed method. In fact,
by considering only the changed method, the method would



be regarded as a non-buggy code. All these factors likely
contributed to our study’s low-accuracy of the models.

C. Actionable Insights

Based on our analysis, detecting bugs and fixing them for
Ruby language is not easily doable by the current models,
nor can they classify the codes as buggy or non-buggy. Even
though machine learning models achieved higher scores, they
still have scores below 60% for bug detection. Similarly, as
discussed above, though models achieved high BLEU scores,
this is not a reliable metric to ensure that the generated code is
executable. These issues mainly arise from the lack of bench-
marks and the need for extended datasets. We recommend the
following directions for the researcher.

Insight 1: Benchmark datasets must ensure the generated
fixed codes are executable. These benchmarks should have test
cases, following a similar approach as HumanEval or other
code generation benchmarks. As Ruby is not a high resource,
this task might require code translation from existing works
to Ruby.

Insight 2: The APR task requires a clear understanding
of the project context and cannot be effectively learned by
simply providing buggy code alongside its corresponding fix.
Future studies could explore alternative methods for collecting
datasets. For instance, researchers could link code commits to
their related bug reports (such as GitHub issues) and utilize
labels on these issues to identify bug-fixing commits. Addi-
tionally, leveraging metadata from datasets, as seen in CodeNet
[41]] could help recognize the project contexts associated with
buggy and corrected code.

Insight 3: In addition to datasets, new methods are required
for bug detection and APR tasks for the Ruby language.
These techniques should be tailored specifically to the Ruby
language to improve the performance and could vary. For
example, techniques can be developed to detect noise in the
dataset or integrate the business logic/project concept in the
models by incorporating retrieval-augmented generated (RAG)
[42] approaches or prompt engineering or prompt tuning with
LLMs that direct the model to include a Ruby-specific context.

Insight 4: Bug detection using machine learning algorithms
demonstrated better performance, and their score did not
decrease much in the cross-project setting. This might suggest
the robustness of these algorithms for this task. Researchers
can rely on computationally cheaper models, i.e., machine
learning models when developing techniques for bug detec-
tion in Ruby. Similar results were seen in text classification
where XGBoost outperforms LLMs, such as GPT-4, in text
classification task [43].

VI. RELATED WORK

This section provides a summary of the research conducted
so far on the downstream tasks being considered. It covers a
wide range of relevant studies and explores the intricacies of
the research, providing valuable insights into the current state
of the field.

A. Bug detection

The field of software engineering has been grappling with
identifying bugs in code using various methods such as static
analysis and machine learning. Different representations of the
bugs, such as abstract syntax trees or code snippets, have been
used before feeding them into the models [36], and empirical
evidence has shown no significance in a particular form of
input given to the model [44]. A study introduced a new model
called DexBERT [45], based on the traditional BERT [46]
transformer representation that does bug detection and outper-
forms the conventional deep learning method called smali2vec.
Despite promising results, there has been a noticeable lack of
research on solving this downstream task using PLMs, unlike
many other downstream software engineering tasks [4]. Our
research aims to address this gap in the literature and provide
insights into this unexplored yet longstanding area of interest.

B. APR

A lot of traditional research has been done on APR over
time. The current papers on APR on PLMs [9] use datasets
from state-of-the-art deep learning/machine learning papers,
such as CoCoNut [47] CodeRep [48] and MegaDiff [49].

There has been work evaluating and fine-tuning Pre-Trained
Language Models for APR [32]. Across four APR bench-
marks, the study finds that the best-performing PLM, when
unaltered, outperforms state-of-the-art deep-learning (DL)—
based APR techniques by 72% in bug fixing. Moreover, the
study addresses the efficiency of different PLMs in terms
of size, time, and memory usage, offering promising direc-
tions for improving PLMs and advocating for transparent
reporting practices to mitigate data leakage concerns in future
evaluations. Different sizes were considered to feed into the
model; the most noteworthy was using Simple Stupid Bugs to
train CodeBert to solve APR task [9]]. Previous research has
demonstrated that APR can be effectively addressed by PLMs
with satisfactory performance. By employing fully fine-tuning
and Parameter-Efficient Fine-Tuning (PEFT) [33]] approaches,
we can discover unexplored opportunities in low-resource pro-
gramming languages. This paves the way for us to experiment
with innovative techniques and push the boundaries of what
can be achieved in this field.

VII. THREATS TO VALIDITY

We discuss the potential threats to provide more guidance
on the interpretation, limitation, and other alternatives of the
empirical experiment.

A. Construct Validity

This threat relates to the bug-fixing commit identification.
The reliance on RegEx to classify bug-fixing commits could
lead to misclassification. While manual validation estimated
a 92% precision, false positives might remain, affecting the
quality of the dataset. We however, followed the practices from
previous studies to ensure a reliable data collection.

Another threat to validity is the assumption that code
becomes bug-free after a bug-fixing commit. In this study, we



relied on this assumption to construct a dataset of bug-fix pairs,
treating the code post-bug-fixing commit as a “’fixed” version.
However, this may not always be accurate, as undetected bugs
might persist in the fixed code. To address this limitation, we
applied stringent filtering criteria. For instance, we excluded
methods associated with future bug-fixing commits and en-
sured the code remained unchanged for at least two years
after the bug-fixing commit. These measures were intended
to increase confidence that the code was truly fixed. Despite
these efforts, the possibility of residual bugs in the fixed
code cannot be entirely eliminated. Such undetected bugs
could introduce noise into the dataset and affect the reliability
of model evaluation. Future work could focus on improving
the methodology for verifying the correctness of fixed code,
refining filtering criteria, and aligning the dataset more closely
with the needs of bug detection tasks.

B. External Validity

This relates to the representativeness of datasets. In this
work, the dataset focuses exclusively on Ruby projects from
GitHub, which may not represent bugs and fixes from other
closed-source projects, limiting the generalizability of the find-
ings to other programming languages. Therefore, we cannot
make a sound claim on the effectiveness of projects in another
programming language, given we have not tested on other
scenarios.

C. Internal Validity

Internal threats refer to factors arising from internal consid-
erations. In this study, we set the hyperparameter values for
fine-tuning the PLM based on prior research and experimented
with various configurations to identify the optimal settings for
the machine learning algorithms. While this approach is widely
accepted, there remains a possibility that the selected values
may not represent the optimal configurations for the models
and algorithms. However, based on the low obtained scores, we
believe changing the parameters would not have a significant
boost in the performance.

D. Conclusion Validity

This relates to the potential risk that the manual validation
uses 100 commits. While useful, 100 commits may not be
representative of the entire dataset, leading to potential over-
estimation or underestimation of dataset quality. For all tests,
we used widely used parameters for the bug detection and APR
tasks. For APR, we were unable to apply Pass@K to ensure
the fixed code is executable, due to the lack of availability
of such dataset that also includes tests cases. We emphasize
however, as discussed in the previous section, that high BLEU
scores do not mean that models are able to fix code reliably,
and other techniques are required to improve the performance
of APR for Ruby.

VIII. CONCLUSION

This study addresses the underexplored challenges of bug
detection and automated program repair in low-resource pro-

10

gramming languages, focusing on Ruby. Leveraging pre-
trained language models and large language models, we con-
ducted a comprehensive analysis of these tasks using our
newly introduced dataset, Defects4Ruby. Our contributions to
this study are 1) the Defects4Ruby dataset, mined from GitHub
using established APR methodologies, which enables the study
of software bug resolution in Ruby, and 2) the insights in
evaluating PLMs and LLMs for this dataset in Ruby. Our
findings reveal that while PLMs and LLMs show potential
for APR, their performance in bug detection remains subop-
timal, with traditional machine learning models performing
competitively on certain metrics. This highlights a critical
need for new techniques tailored to low-resource languages
like Ruby. Specifically, PLMs such as CodeT5 demonstrate
promising capabilities for APR, achieving significantly higher
performance than LLMs. However, bug detection scores falling
below 60% indicate substantial room for improvement.

To summarize, our study underscores the limitations of
existing approaches and opens avenues for future research,
including the development of domain-specific models, im-
proved data augmentation techniques, and a deeper explo-
ration of fine-tuning and prompting strategies for bug-related
tasks. The study contributes to the existing research gap by
providing insights into two complex downstream tasks in
software bug resolution for Ruby. Our findings and the open-
sourced Defects4Ruby dataset will serve as valuable resources
for researchers and practitioners working to address software
engineering challenges in low-resource languages, specially
Ruby.

IX. DATA AVAILABILITY

The data and scripts to reproduce our results are available
in the replication packageE]

REFERENCES

K. Huang, B. Chen, C. Xu, Y. Wang, B. Shi, X. Peng, Y. Wu, and Y. Liu,
“Characterizing usages, updates and risks of third-party libraries in java
projects,” Empirical Software Engineering, vol. 27, no. 4, p. 90, 2022.
Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757-773, 2012.

C. Jones and O. Bonsignour, The Economics of Software Quality, 1st ed.
Addison-Wesley Professional, 2011.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” 2023.

D. Yan, Z. Gao, and Z. Liu, “A closer look at different difficulty
levels code generation abilities of chatgpt,” in 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2023, pp. 1887-1898.

M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui, “Exploring
parameter-efficient fine-tuning techniques for code generation with large
language models,” 2024.

T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, “Improving few-
shot prompts with relevant static analysis products,” arXiv preprint
arXiv:2304.06815, 2023.

Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y. Liu, “Large
language models in fault localisation,” arXiv preprint arXiv:2308.15276,
2023.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Zhttps://osf.io/yd57t/?view_only=dbd817dd5d564bf0b1c4b9efb72c9095


https://osf.io/yd57t/?view_only=dbd817dd5d564bf0b1c4b9efb72c9095

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. Mashhadi and H. Hemmati, “Applying codebert for automated pro-
gram repair of java simple bugs,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021, pp. 505-509.
Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” 2020.

H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
2020.

S. Chandran and K. Abraham, “A correlative scrutiny on two program-
ming dialects: Ruby vs python,” International Journal of Engineering
and Advanced Technology, vol. 9, pp. 4395-4404, 02 2020.

S. Kaleba, O. Larose, R. Jones, and S. Marr, “Who you gonna call:
analyzing the run-time call-site behavior of ruby applications,” in
Proceedings of the 18th ACM SIGPLAN International Symposium on
Dynamic Languages, 2022, pp. 15-28.

GitHub Blog, “The state of open source and ai,” https://github.blog/
2023-11-08-the- state-of-open-source-and-ai/, November 2023.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” 2019.

J. P. Near and D. Jackson, “Finding security bugs in web applications
using a catalog of access control patterns,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE °16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
947-958. [Online]. Available: https://doi.org/10.1145/2884781.2884836
S. Chowdhury, G. Uddin, H. Hemmati, and R. Holmes, “Method-level
bug prediction: Problems and promises,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 4, pp. 1-31, 2024.

M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches in
the wild via neural machine translation,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 28, no. 4, pp. 1-29, 2019.
R. Dandamudi and G. Rodriguez-Perez, “A preliminary study of
multilingual code language models for code generation task using
translated benchmarks,” in Proceedings of the 39th IEEE/ACM
International ~Conference on Automated Software Engineering
Workshops, ser. ASEW °24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 94-99. [Online]. Available:
https://doi.org/10.1145/3691621.3694939

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

0. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. 1EEE, 2021, pp. 560-564.
GitHub. (2024) Fork a repository. Github.
[Online]. Available: https://docs.github.com/en/pull-requests/
collaborating- with-pull-requests/working- with- forks/fork-a-repo

D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

GitHub.  (2024)  About git  cherry-pick.  Github.  [On-
line]. Available: https://docs.github.com/en/desktop/managing-commits/
cherry-picking-a-commit-in- github-desktop

F. Madeiral, T. Durieux, V. Sobreira, and M. Maia, “Towards an
automated approach for bug fix pattern detection,” arXiv preprint
arXiv:1807.11286, 2018.

H. Li, G. K. Rajbahadur, D. Lin, C.-P. Bezemer, and Z. M. Jiang,
“Keeping deep learning models in check: A history-based approach to
mitigate overfitting,” IEEE Access, 2024.

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, M.-F. Moens,
X. Huang, L. Specia, and S. W.t. Yih, Eds. Online and

Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 8696-8708. [Online]. Available: https:

11

[28]

[29]

(30]
[31]

[32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

/faclanthology.org/2021.emnlp-main.685

W. Tang, M. Tang, M. Ban, Z. Zhao, and M. Feng, “Csgvd: A
deep learning approach combining sequence and graph embedding
for source code vulnerability detection,” Journal of Systems and
Software, vol. 199, p. 111623, 2023. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0164121223000183

B. Roziére et al., “Code llama: Open foundation models for code,” 2023,
arXiv:2308.12950 [cs.CL].

OpenAl, “gpt-40,” https://openai.com/index/hello-gpt-4o/, 2024.

A. Radford and K. Narasimhan, “Improving language understanding
by generative pre-training,” 2018. [Online]. Available: https://api.
semanticscholar.org/CorpusID:49313245

N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language mod-
els on automated program repair,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 1430-1442.

C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 382-394.

T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

E. Ceylan, F. O. Kutlubay, and A. B. Bener, “Software defect iden-
tification using machine learning techniques,” in 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications (EU-
ROMICRO’06), 2006, pp. 240-247.

S. Aleem, L. F. Capretz, and F. Ahmed, “Benchmarking machine
learning technologies for software defect detection,” 2015.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. ACM, Aug.
2016. [Online]. Available: http://dx.do1.org/10.1145/2939672.2939785
L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 10 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311-318.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine learning benchmark
dataset for code understanding and generation,” 2021.

R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker, V. Thost, L. Buratti,
S. Pujar, S. Ramji, U. Finkler, S. Malaika, and F. Reiss, “Codenet: A
large-scale ai for code dataset for learning a diversity of coding tasks,”
2021.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W. tau Yih, T. Rocktischel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021. [Online]. Available: https://arxiv.org/abs/2005.11401

M. Bohacek and M. Bravansky, “When XGBoost outperforms GPT-4
on text classification: A case study,” in Proceedings of the 4th
Workshop on Trustworthy Natural Language Processing (TrustNLP
2024), A. Ovalle, K.-W. Chang, Y. T. Cao, N. Mehrabi, J. Zhao,
A. Galstyan, J. Dhamala, A. Kumar, and R. Gupta, Eds. Mexico City,
Mexico: Association for Computational Linguistics, Jun. 2024, pp.
51-60. [Online]. Available: https://aclanthology.org/2024.trustnlp-1.5
C. Niu, C. Li, V. Ng, D. Chen, J. Ge, and B. Luo, “An empirical
comparison of pre-trained models of source code,” 2023.

T. Sun, K. Allix, K. Kim, X. Zhou, D. Kim, D. Lo, T. F. Bissyandé,
and J. Klein, “Dexbert: Effective, task-agnostic and fine-grained repre-
sentation learning of android bytecode,” IEEE Transactions on Software
Engineering, vol. 49, no. 10, pp. 4691-4706, 2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.
T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p.
101-114. [Online]. Available: https://doi.org/10.1145/3395363.3397369


https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1145/2884781.2884836
https://doi.org/10.1145/3691621.3694939
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/desktop/managing-commits/cherry-picking-a-commit-in-github-desktop
https://docs.github.com/en/desktop/managing-commits/cherry-picking-a-commit-in-github-desktop
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://www.sciencedirect.com/science/article/pii/S0164121223000183
https://www.sciencedirect.com/science/article/pii/S0164121223000183
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/2005.11401
https://aclanthology.org/2024.trustnlp-1.5
https://doi.org/10.1145/3395363.3397369

[48] Z. Chen and M. Monperrus, “The codrep machine learning on source “Megadiff: A dataset of 600k java source code changes categorized by
code competition,” 2018. diff size,” 2021.
[49] M. Monperrus, M. Martinez, H. Ye, F. Madeiral, T. Durieux, and Z. Yu,

12



	Introduction
	Dataset
	Data Collection
	Repository Selection
	Bug-Fixing Commits Identification
	Bug-Fix Pairs Extraction
	Manual Evaluation
	Dataset Preparation


	Language Models and Evaluation Metrics
	The Choice of Language Models
	Learning methods
	Fine Tuning
	Zero-shot learning

	Machine Learning Methods
	XGBoost
	Random Forest

	Evaluation Metrics

	Results
	PLMs and LLMs Performance for Bug Detection and APR
	Models' Performance on Bug Detection and APR in Cross-Project Setting

	Discussion
	Result Analysis
	Example Cases
	Actionable Insights

	Related Work
	Bug detection
	APR

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity
	Conclusion Validity

	Conclusion
	Data Availability

