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ABSTRACT
Software companies have widely used online A/B testing to eval-
uate the impact of a new technology by offering it to groups of
users and comparing it against the unmodified product. However,
running online A/B testing needs not only efforts in design, imple-
mentation, and stakeholders’ approval to be served in production
but also several weeks to collect the data in iterations. To address
these issues, a recently emerging topic, called offline A/B testing, is
getting increasing attention, intending to conduct the offline eval-
uation of new technologies by estimating historical logged data.
Although this approach is promising due to lower implementation
effort, faster turnaround time, and no potential user harm, for it
to be effectively prioritized as requirements in practice, several
limitations need to be addressed, including its discrepancy with
online A/B test results, and lack of systematic updates on varying
data and parameters. In response, in this vision paper, I introduce
AutoOffAB, an idea to automatically run variants of offline A/B
testing against recent logging and update the offline evaluation
results, which are used to make decisions on requirements more
reliably and systematically.

CCS CONCEPTS
• Computing methodologies → Learning from implicit feed-
back; • Information systems→ Evaluation of retrieval results.
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1 INTRODUCTION
Software companies are embracing a data-driven culture and are
shifting from traditional requirement-based development to data-
driven development and data-driven decision-making [1, 5, 25].
Online A/B testing (also known as online controlled experiments,
split tests, or randomized experiments) [6, 8, 15, 27] is widely used
to collect implicit user behavior and product effect of a given change
for online andweb-facing products, such as social media [27], search
engines [23], social networks [7, 27], and web services [18, 24]. The
procedure offers different product variants to different groups of
users, then collects data related to the user behavior, and compares
the different product variants to the unmodified product [6, 8].
The A/B test allows the gathering of information for a small but
significant percentage of users for stakeholders to make decisions
on whether to launch a particular variant to 100% of users [15, 27].

However, online A/B test suffers from several limitations. First, it
takes significant development efforts to design and implement the
change in the code base, with production-level standards. Second,
the change will have a real impact on a relatively large group of
users in the A/B test to get statistically significant A/B results. So it
could affect users negatively if the change in the A/B test includes
any bug or safety issue. Thus, domain owners of the products need
to sign off for them to be served to a subset of users. Lastly, it
typically needs several weeks to run the A/B tests to collect the
data with potentially multiple iterations [15]. These limitations
dramatically increase the time for the product team to try new
ideas.

To address these pain points, a lot of researchers have studied
the emerging topic of offline A/B testing (or offline policy evaluation,
counterfactual evaluation) [9, 10, 14, 19, 20]. The objective of offline
A/B testing is to conduct offline evaluation of a new technology by
estimating from historical logged data [14]. A number of estimators
have been developed such as importance sampling (IS) [16], capped
importance sampling (CIS) [2], normalized and capped importance
sampling (NCIS) [22] to reach a good balance between bias and
variance [3], therefore increasing the correlation between the esti-
mated results in offline A/B tests and the actual results in online
A/B tests.

Although offline A/B testing is a promising approach due to
much smaller development effort and faster turnaround time, there
are still limitations for it to be reliably and effectively used in re-
quirements engineering in practice. The offline A/B testing is a
manual process that runs the offline evaluation for manually se-
lected algorithms (or policy [9]) against the one-off historical data.
Therefore, there is a lack of systematic updates of offline evaluation
on either 1) the updated and chosen historical data or 2) other algo-
rithms that could be more optimal than the manually selected ones.
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Figure 1: Visual illustration of the proposed AutoOffAB in the context of Data-Driven Requirements Engineering (DDRE)
cycle [17]. Without this work, the offline A/B testing needs to be conducted manually by software engineers or ML scientists,
which depends heavily on their individual skills. With this work, the offline A/B testing is triggered periodically. Thus,
engineers or scientists could focus on monitoring and reviewing the results to be used for decisions on requirements.

This can lead to unreliable offline results and potentially enlarges
the discrepancy between offline and online A/B test results.

To address this limitation, in this paper, I introduce AutoOffAB,
an idea to automatically generate and periodically update the of-
fline A/B testing evaluation towards more reliable and systematic
offline A/B test results for making decisions in requirements engi-
neering. The automation produces offline evaluation as periodic
updates from recent historical data rather than one-off historical
data. This can prevent the outdated evaluation results due to any
recent product change. Meanwhile, the periodic automated process
also generates results for modified technologies using either ran-
domized genetic algorithms (GA) [12] or potentially more sophisti-
cated methods in the future, rather than a limited set of manually
selected technologies in a manual process. I believe that the results
from AutoOffAB is more reliable and systematic than the current
manual process so that the results and numbers can be more trusted
when being prioritized in Data-Driven Requirements Engineering
(DDRE) [17], as shown in Figure 1. More reliable numbers can also
help reduce the gap between the offline A/B testing results and
the online A/B testing results, which is a critical criterion for the
effectiveness and usefulness of offline A/B testing. In the remaining
parts of this paper, I describe the idea of AutoOffAB in detail and
discuss possible ways to realize it.

2 OFFLINE A/B TESTING ANALYSIS
2.1 The Current State of Offline A/B Testing
In the current software industry, offline A/B testing is a manual
process conducted by software engineers or ML scientists. It has
been used in different data-intensive products such as search [14],
recommendation [20], ad placement [2, 14], etc. The steps of the
offline A/B testing are described as follows. First, the software

engineers or ML scientists decide what type of log data to use in the
offline evaluation. Second, they select one or a few algorithms to
be evaluated. The settings of an algorithm include hyperparameter
values, modeling decisions, feature sets, etc. Third, they define the
metrics for offline evaluation. Finally, they conduct the evaluation
to generate evaluation results for each algorithm against the logged
data. Each experimental result corresponds to each algorithm with
its setting. Although the offline evaluation significantly reduces
the turnaround time of iterating new ideas, it is assumed that the
software engineers or ML scientists have full experience with the
following questions:

• How many algorithms to evaluate?
• How to determine the settings of these algorithms?
• How to select the historical logs in offline evaluation?
• How to define the cadency of running the evaluation?

However, it appears in some studies that this currently manual
process has the following drawbacks:

• It depends solely on the engineers or scientists to decide
which setting or parameter values of an algorithm to be used
in the offline evaluation. Thus, the choice of variants and
their parameter values rely heavily on the skills of engineers,
who usually have little assistance or guidance in choosing
variants.

• It is often not humanly possible to try all combinations of
settings and parameter values to obtain the parameters that
lead to the precise optimal result.

• The offline evaluation is a one-off job on certain data from
historical logs, but the evaluation results may be inconsistent
with the data from different logs (such as most recent data,
or shuffled data using certain strategies).
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Figure 2: Visual illustration of AutoOffAB. Overall, AutoOffAB uses the program and log streaming to periodically generate a
population of variants withmodified settings, and then evaluates the variants against the updated chosen logs.

As an example to illustrate these issues, the offline A/B testing
conducted for playlist recommendation [10] used 12 algorithms,
with different settings on hyperparameter values, modeling deci-
sions, training data definition, etc. Although the researchers tested
12 different settings extensively, it is still not realistic to try all pos-
sible combinations of settings to get the most optimal results. Also,
the offline evaluation is a one-off job on the predefined historical
logs from systems running in production. However, the product
is live and is collecting data every day, with new changes in the
product or users as time goes by. So the one-off results of the old
historical logs may not hold the same for the recent logs. These
issues are not fully explored and addressed.

2.2 Motivation of Automated Offline A/B
Testing

My idea is to periodically trigger the offline A/B testing evaluation
on the updated logs with modified variants, instead of manually
running it as a one-off job. Intuitively, this can lead to more reliable
and more comprehensive offline A/B test results to be prioritized
in requirements analysis and specifications. As data has become
an intrinsic and evolving component in software development, the
motivation behind this idea is to replace the manual process with
the automated process for offline evaluation based on data of data-
intensive applications. This idea addresses the pain points of the
current manual process as mentioned above. First, it alleviates the
burden of engineers or scientists to choose the settings of the algo-
rithms that may lead to the "best" results based on their educated

guesses and skills [21]. In fact, these educated guesses are often
inaccurate, as there is evidence pointing out that these intuitions
are often wrong and contradict the data from the A/B testing [15].
Second, even if the educated guesses are in the right direction due
to the strong skillsets, the machine does a much better job than
humans on trying all combinations of settings to find the precise
optimal results [11, 26]. Third, reliability can be better ensured
by repeating the offline evaluation on logs that are continuously
updated and variants with modified settings [13].

3 PROPOSED ARCHITECTURE FOR
AUTOMATED OFFLINE A/B TESTING

3.1 Overview
In this paper, I present AutoOffAB to automate the manual proce-
dure of offline A/B testing. Figure 2 provides a visual illustration of
AutoOffAB. On the left side, the experiment lifecycle is displayed.
As aforementioned, due to the considerable amount of time for
collecting data on a large user base and efforts on the design and
implementation, only a small number of ideas can be tested in online
A/B tests in actual working environments of software companies.
Therefore, offline A/B testing can be an area of high Return on
Investment (ROI) if the offline A/B results have a strong alignment
with online A/B results. Currently, engineers or scientists typically
run a one-off offline evaluation on certain historically logged data.

The red dashed box in Figure 2 illustrates how AutoOffAB works.
AutoOffAB is based on three components:

• Program,
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• Hyperparameters of Program,
• Log Streaming.

The program refers to the implementation of offline A/B testing. Hy-
perparameters of the program refer to the settings of the program
that result in modified technologies such as the model hyperparam-
eters, external and internal parameters, modeling choice, feature
set, choice of algorithmic variants, etc. Log streaming is the logs
collected by the live product. AutoOffAB uses the program and log
streaming to periodically generate a population of variants with
modified settings, and then evaluates the variants against the up-
dated chosen logs.

Next, I discuss the following steps of AutoOffAB: 1) Hyperpa-
rameter Specification, 2) Algorithm Design of Variants Selection, 3)
Evaluation of Variants. 4) Operations and Monitoring of Variants.
5) Decisions on Requirements.

3.2 Hyperparameter Specification
I refer to Hyperparameter Specification as specifying the hyper-
parameters of the program for the offline A/B evaluation. This
includes the specification of all of the hyperparameters that poten-
tially impact the evaluation results, and their valid values. These
hyperparameters typically include external and internal parameter
values, modeling choices, feature set, training data sources, etc [10].
Formally, the program 𝑚 of offline A/B testing contains a set of
hyperparameters 𝑃 = {𝑝1, ..., 𝑝𝑛}, where each hyperparameter 𝑝𝑖
has a corresponding range of valid values 𝑅𝑖 . So the goal in this step
is to specify 𝑃 = {𝑝1, ..., 𝑝𝑛} and 𝑅 = {𝑅1, ..., 𝑅𝑛}. Different types of
hyperparameters for the program𝑚 can be included, such as the
one that specifies which data to use from the log streaming.

3.3 Algorithm Design of Variants Selection and
Evaluation

After the hyperparameters 𝑃 and their valid value ranges 𝑅 are spec-
ified, the next step is to generate and select variants𝑉 = {𝑣1, ..., 𝑣𝑚}
for evaluation. Each variant 𝑣 𝑗 is an implementation of the program
𝑚 with its assigned values for hyperparameter 𝑃 = {𝑝1, ..., 𝑝𝑛}.
In the manual process, engineers or scientists need to use their
experience and skillset to assign the hyperparameter values. In
the proposed automated architecture, a genetic algorithm is used
to generate a population of variants in each offline evaluation 𝑒𝑘 .
These variants are then selected and evaluated against the historical
data 𝐷𝑒𝑘 , based on the pre-defined measurement 𝑐 for offline evalu-
ation. The measurement is used as a fitness function for the genetic
algorithm. So, the objective of the genetic algorithm is to find a vari-
ant 𝑣 that maximizes 𝑐 (𝑣, 𝐷𝑒𝑘 ), the evaluation measurement of the
given variant 𝑣 and data 𝐷𝑒𝑘 from the evaluation 𝑒𝑘 . The genetic al-
gorithm is chosen because of its simplicity and wide usage, but any
search and optimization technique in Search Based Software Engi-
neering (SBSE) [11] or more sophisticated methods could be used in
future work. Note that if the measurement function 𝑐 has multiple
objectives rather than one objective, multi-objective optimization
such as Multi-Objective Evolutionary Algorithm (MOEA) [4] may
be used.

3.4 Results Monitoring and Decisions on
Requirements

The last step of AutoOffAB is related to how to analyze and monitor
the periodic, automated offline evaluation results, and how to use
the results to make decisions and prioritizations on requirements.
First, the continuous and automated evaluation results need to be
monitored and analyzed to find out if there are any non-trivial
findings that are worth discussing and will potentially impact re-
quirements engineering, such as any change in evaluation results
on most recent data, any abnormal results on certain models, etc.
The monitoring and analysis are expected to be lightweight, with-
out heavy efforts in data analytics. The stakeholders need to re-
view the evaluation results and make decisions on requirements
for which work items need to be prioritized based on the results.
With the automated offline A/B testing results, a continuous cycle
is formed, known as the Data-Driven Requirement Engineering
cycle. As shown in Figure 1, the cycle starts with implicit feedback
from users via logging. Then, the automated offline A/B testing is
run to generate evaluation results. The results are monitored and
analyzed by engineers or scientists to make decisions on require-
ments. Finally, the derived requirements are executed, developed,
and launched in the development process. After the new launches,
The cycle starts again with implicit user feedback from updated
chosen data.

4 FUTURE PLANS
Public Benchmark and Baseline Methods. As for the future
plan, firstly, a public benchmark together with baseline methods
and their evaluations need to be created for the task of automating
offline A/B testing. The benchmark will enable the comparison
between different algorithms and will facilitate the development
and evaluation of offline A/B testing. Secondly, I have formulated
this problem as an optimization problem, so different optimization
methods or search-based methods can be used as baselines for this
problem, such as the GA-based methods mentioned in this work.

LLM-based Automation for Offline A/B Testing. Finally,
given the recent advances in Natural Language Processing (NLP)
and Large LanguageModels (LLM) on code generation and software
engineering tasks, LLM-based approaches should be explored to
create more intelligent non-trivial variants for offline A/B testing so
that the capability of automated offline evaluation will go beyond
changing hyperparameter values with search-based methods only.

5 CONCLUSION
The great potential of offline A/B testing has attracted much interest
from both academia and the software industry recently. The beauty
of offline A/B testing lies in its support of much faster iteration
of trying ideas in practice for many data-intensive ML-enabled
applications such as search, recommender systems, and advertising.
In this paper, I present AutoOffAB, an idea toward automated offline
A/B testing. AutoOffAB automatically runs and periodically updates
the offline A/B testing results, which are used to make decisions
on requirements for further development. Given the importance of
offline A/B testing, I argue that there should be a better presence
for Software Engineering research to enable more reliable and
systematic offline A/B test results via solutions like AutoOffAB.
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